Unique Properties of the Rabbit Prion Protein Oligomer
نویسندگان
چکیده
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders infecting both humans and animals. Recent works have demonstrated that the soluble prion protein oligomer (PrPO), the intermediate of the conformational transformation from the host-derived cellular form (PrPC) to the disease-associated Scrapie form (PrPSc), exerts the major neurotoxicity in vitro and in vivo. Rabbits show strong resistance to TSEs, the underlying mechanism is unclear to date. It is expected that the relative TSEs-resistance of rabbits is closely associated with the unique properties of rabbit prion protein oligomer which remain to be addressed in detail. In the present work, we prepared rabbit prion protein oligomer (recRaPrPO) and human prion protein oligomer (recHuPrPO) under varied conditions, analyzed the effects of pH, NaCl concentration and incubation temperature on the oligomerization, and compared the properties of recRaPrPO and recHuPrPO. We found that several factors facilitated the formation of prion protein oligomers, including low pH, high NaCl concentration, high incubation temperature and low conformational stability of monomeric prion protein. RecRaPrPO was formed more slowly than recHuPrPO at physiological-like conditions (< 57°C, < 150 mM NaCl). Furthermore, recRaPrPO possessed higher susceptibility to proteinase K and lower cytotoxicity in vitro than recHuPrPO. These unique properties of recRaPrPO might substantially contribute to the TSEs-resistance of rabbits. Our work sheds light on the oligomerization of prion proteins and is of benefit to mechanistic understanding of TSEs-resistance of rabbits.
منابع مشابه
Introducing critical residues in the human prion protein and its Asp 178 Asn mutant by molecular dynamics simulation
The molecular dynamics (MD) simulation method is used to assess structural details for humanprion protein (hereafter PrPN) and its Asp178 Asn mutant (hereafter PrPm) which causes fatalfamilial insomnia disease. The results reveal that the flexibility and instability increase in PrPmcould be related to specific amino acids exposed to the solvent. Solvation free energy of PrPm is 20kjmot1nni2 mor...
متن کاملAcid-induced molten globule state of a prion protein: crucial role of Strand 1-Helix 1-Strand 2 segment.
The conversion of a cellular prion protein (PrP(C)) to its pathogenic isoform (PrP(Sc)) is a critical event in the pathogenesis of prion diseases. Pathogenic conversion is usually associated with the oligomerization process; therefore, the conformational characteristics of the pre-oligomer state may provide insights into the conversion process. Previous studies indicate that PrP(C) is prone to ...
متن کاملA Study on The Effect of Temperature on Human Prion Protein Structure through Molecular Dynamic Simulation
Background & Aims: The normal form of the prion protein is called PrPC and its infectious form is called PrPSc. This protein functions like a crystallized core for the transformation of PrPc into an abnormal PrPSc. The aim of the present study was to investigate the effect of temperature on human prion protein structure through molecular dynamic simulation. Methods: In this research, the GROMAC...
متن کاملPolymorphism of Prion Protein Gene (PRNP) in Iranian Holstein and Two Local Cattle Populations (Golpayegani and Sistani) of Iran
Bovine spongiform encephalopathy (BSE) is a fatal infectious neurodegenerative disease in cattle, characterized by the accumulation of an abnormal, proteaseresistant prion protein (PrPSc) in the brain. BSE is similar to scrapie in sheep and goats and Creuzfeldt-Jakob disease in humans. Susceptibility in cattle hasbeen shown to be under the influence of two polymorphic locations, which are...
متن کاملN-terminal Domain of Prion Protein Directs Its Oligomeric Association*
The self-association of prion protein (PrP) is a critical step in the pathology of prion diseases. It is increasingly recognized that small non-fibrillar β-sheet-rich oligomers of PrP may be of crucial importance in the prion disease process. Here, we characterize the structure of a well defined β-sheet-rich oligomer, containing ∼12 PrP molecules, and often enclosing a central cavity, formed us...
متن کامل